Surface Sialic Acids Taken from the Host Allow Trypanosome Survival in Tsetse Fly Vectors

نویسندگان

  • Kisaburo Nagamune
  • Alvaro Acosta-Serrano
  • Haruki Uemura
  • Reto Brun
  • Christina Kunz-Renggli
  • Yusuke Maeda
  • Michael A.J. Ferguson
  • Taroh Kinoshita
چکیده

The African trypanosome Trypanosoma brucei, which causes sleeping sickness in humans and Nagana disease in livestock, is spread via blood-sucking Tsetse flies. In the fly's intestine, the trypanosomes survive digestive and trypanocidal environments, proliferate, and translocate into the salivary gland, where they become infectious to the next mammalian host. Here, we show that for successful survival in Tsetse flies, the trypanosomes use trans-sialidase to transfer sialic acids that they cannot synthesize from host's glycoconjugates to the glycosylphosphatidylinositols (GPIs), which are abundantly expressed on their surface. Trypanosomes lacking sialic acids due to a defective generation of GPI-anchored trans-sialidase could not survive in the intestine, but regained the ability to survive when sialylated by means of soluble trans-sialidase. Thus, surface sialic acids appear to protect the parasites from the digestive and trypanocidal environments in the midgut of Tsetse flies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host-seeking efficiency can explain population dynamics of the tsetse fly Glossina morsitans morsitans in response to host density decline

Females of all blood-feeding arthropod vectors must find and feed on a host in order to produce offspring. For tsetse-vectors of the trypanosomes that cause human and animal African trypanosomiasis-the problem is more extreme, since both sexes feed solely on blood. Host location is thus essential both for survival and reproduction. Host population density should therefore be an important driver...

متن کامل

Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response.

Tsetse flies (Glossina sp.) are the vectors that transmit African trypanosomes, protozoan parasites that cause human sleeping sickness and veterinary infections in the African continent. These blood-feeding dipteran insects deposit saliva at the feeding site that enables the blood-feeding process. Here we demonstrate that tsetse fly saliva also accelerates the onset of a Trypanosoma brucei infe...

متن کامل

Insights into the Trypanosome-Host Interactions Revealed through Transcriptomic Analysis of Parasitized Tsetse Fly Salivary Glands

The agents of sleeping sickness disease, Trypanosoma brucei complex parasites, are transmitted to mammalian hosts through the bite of an infected tsetse. Information on tsetse-trypanosome interactions in the salivary gland (SG) tissue, and on mammalian infective metacyclic (MC) parasites present in the SG, is sparse. We performed RNA-seq analyses from uninfected and T. b. brucei infected SGs of...

متن کامل

A Receptor’s Tale: An Eon in the Life of a Trypanosome Receptor

African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insect...

متن کامل

A systematic review and meta-analysis of trypanosome prevalence in tsetse flies

BACKGROUND The optimisation of trypanosomosis control programs warrants a good knowledge of the main vector of animal and human trypanosomes in sub-Saharan Africa, the tsetse fly. An important aspect of the tsetse fly population is its trypanosome infection prevalence, as it determines the intensity of the transmission of the parasite by the vector. We therefore conducted a systematic review of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2004